RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. SECOND SEMESTER EXAMINATION, MAY 2016

FIRST YEAR [BATCH 2015-18]

Date : 23/05/2016 Time : 11 am – 2 pm

MATHEMATICS (General)

Paper : II

Full Marks : 75

[Use a separate Answer Book for each group]

<u>Group – A</u>

Answer <u>any three</u> questions from question nos. <u>1 to 5</u> :

- 1. If by a rotation of axes about the origin, (ax+by) and (cx+dy) be changed to (a'x'+b'y') and (c'x'+d'y') respectively, then show that ad-bc = a'd'-b'c'. [5]
- 2. Show that the straight line x + y + 1 = 0 and the two straight lines $(x + y)^2 3(x y)^2 = 0$ form the sides of an equilateral triangle.
- 3. Reduce the equation $4x^2 4xy + y^2 + 2x 26y + 9 = 0$ to its canonical form and hence determine the nature of the conic.
- 4. The polar of the point P w.r.t the circle $x^2 + y^2 = a^2$ touches the circle $4(x^2 + y^2) = a^2$. Show that the locus of P is $x^2 + y^2 = 4a^2$.

5. Prove that the two conics $\frac{\ell_1}{r} = 1 - e_1 \cos \theta$ and $\frac{\ell_2}{r} = 1 - e_2 \cos(\theta - \alpha)$ will touch one another, if $\ell_1^2(1 - e_2^2) + \ell_2^2(1 - e_1^2) = 2\ell_1\ell_2(1 - e_1e_2\cos\alpha)$. [5]

Answer any three questions from questions nos. 6 to 10 :

- 6. a) Show that the following vectors are coplanar $3\vec{a} 7\vec{b} 4\vec{c}$, $3\vec{a} 2\vec{b} + \vec{c}$, $\vec{a} + \vec{b} + 2\vec{c}$ where $\vec{a}, \vec{b}, \vec{c}$ are any three non-coplanar vectors.
 - b) Show that the three vectors $2\vec{i} \vec{j} + \vec{k}$, $\vec{i} 3\vec{j} 5\vec{k}$, $3\vec{i} 4\vec{j} 4\vec{k}$ form the sides of a right-angled triangle.
- 7. In a triangle ABC prove that $c^2 = a^2 + b^2 2ab \cos C$, where symbols have their usual meaning.
- 8. a) If a, b, c are three non-coplanar vectors, then find the value of (a −b) · (b −c) × (c −a). [2]
 b) Prove by vector method that if two medians of a triangle be equal then the triangle is isosceles. [3]
- 9. Find the vector equation of the plane through the point (4,3,-1) and perpendicular to the vector $(3\hat{i}-4\hat{j}+\hat{k})$. Find also the distance of the point (1,2,3) from the plane.
- 10. a) Find the torque about the point B(3,-1,3) of a force P is $(4\vec{i}+2\vec{j}+\vec{k})$ which is passing through the point A(5,2,4).
 - b) A particle being acted on by a constant forces $(4\vec{i} + \vec{j} 3\vec{k})$ and $(3\vec{i} + \vec{j} \vec{k})$ is displaced from the point $(\vec{i} + 2\vec{j} + 3\vec{k})$ to the point $(5\vec{i} + 4\vec{j} \vec{k})$. Find the total work done by the force. [3]

<u>Group – B</u>

Answer <u>any five</u> questions from questions nos. <u>11 to 18</u> :

11. Show that if $x_n = \frac{3n+1}{n+2}$, then the sequence $\{x_n\}$ is strictly monotonic increasing. Is the sequence (2+3) convergence? Justify your answer.

[3×5]

[5]

[5]

[5]

[3×5]

[2]

[3]

[5]

[5]

[2]

[5×5]

- 12. a) Test for convergence of the series $\frac{1}{3 \cdot 7} + \frac{1}{4 \cdot 9} + \frac{1}{5 \cdot 11} + \frac{1}{6 \cdot 13} + \dots$ [3]
 - b) Is the following series convergent?

$$1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$$
 [2]

13. a) Show that between any two roots of e^x cos x = 1, there exists at least one root of e^x sin x -1=0. [2]
b) Verify Lagrange's mean value theorem for the function f(x) = x(x-1)(x-3) in [0,4]. [3]

14. Find a, b such that
$$\lim_{x \to 0} \frac{x(1 + a\cos x) - b\sin x}{x^3} = 1.$$
 [5]

- 15. Find the maximum value of $\left(\frac{1}{x}\right)^x$.
- 16. Use the Lagrange's method of undetermined multipliers to find the minimum value of $x^2 + y^2 + z^2$ subject to the condition x+y+z = 6. [5]
- 17. Find the asymptotes of the curve $y^3 xy^2 x^2y + x^3 + x^2 y^2 1 = 0$. [5]

18. Find the envelope of the family
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
 where the parameters a & b are connected by $a+b = c$. [5]

Answer any two questions from question nos. 19 to 21 :

19. Evaluate $\int_{0}^{1} \cot^{-1}(1-x+x^{2}) dx$. [5]

20. Find the Reduction formula for $\int_{0}^{\frac{\pi}{4}} \tan^{n} x \, dx$, n being a positive integer. Use it to evaluate

$$\int_{0}^{\infty} \tan^{6} x \, dx \,.$$
[5]

21. Evaluate the following limit : $\lim_{n \to \infty} \left\{ \left(1 + \frac{1}{n}\right) \left(1 + \frac{2}{n}\right) \left(1 + \frac{3}{n}\right) \dots \left(1 + \frac{n}{n}\right) \right\}^{\frac{1}{n}}.$ [5]

Answer <u>any two</u> questions from question nos. <u>22 to 24</u> :

- 22. a) Find the order and degree of the following differential equation : $\left\{1 + \left(\frac{dy}{dx}\right)^2\right\}^{\frac{2}{3}} = \frac{d^2y}{dx^2}$. [2]
 - b) Formulate the differential equation from $y = e^{-x}(A\cos x + B\sin x)$ (A, B : parameters) [3]
- 23. Find the integrating factor and the general solution of the equation $(y^2e^x + 2xy)dx x^2dy = 0$. [5]
- 24. Find the general and singular solution of $y = px + \sqrt{a^2p^2 + b^2} \left(p \equiv \frac{dy}{dx} \right)$. [5]

_____ X _____

[2×5]

[5]

[2×5]